\(\int \frac {1}{(c e+d e x) (a+b (c+d x)^3)^3} \, dx\) [2906]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 94 \[ \int \frac {1}{(c e+d e x) \left (a+b (c+d x)^3\right )^3} \, dx=\frac {1}{6 a d e \left (a+b (c+d x)^3\right )^2}+\frac {1}{3 a^2 d e \left (a+b (c+d x)^3\right )}+\frac {\log (c+d x)}{a^3 d e}-\frac {\log \left (a+b (c+d x)^3\right )}{3 a^3 d e} \]

[Out]

1/6/a/d/e/(a+b*(d*x+c)^3)^2+1/3/a^2/d/e/(a+b*(d*x+c)^3)+ln(d*x+c)/a^3/d/e-1/3*ln(a+b*(d*x+c)^3)/a^3/d/e

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {379, 272, 46} \[ \int \frac {1}{(c e+d e x) \left (a+b (c+d x)^3\right )^3} \, dx=-\frac {\log \left (a+b (c+d x)^3\right )}{3 a^3 d e}+\frac {\log (c+d x)}{a^3 d e}+\frac {1}{3 a^2 d e \left (a+b (c+d x)^3\right )}+\frac {1}{6 a d e \left (a+b (c+d x)^3\right )^2} \]

[In]

Int[1/((c*e + d*e*x)*(a + b*(c + d*x)^3)^3),x]

[Out]

1/(6*a*d*e*(a + b*(c + d*x)^3)^2) + 1/(3*a^2*d*e*(a + b*(c + d*x)^3)) + Log[c + d*x]/(a^3*d*e) - Log[a + b*(c
+ d*x)^3]/(3*a^3*d*e)

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 379

Int[(u_)^(m_.)*((a_) + (b_.)*(v_)^(n_))^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m), Subst[Int[x^m
*(a + b*x^n)^p, x], x, v], x] /; FreeQ[{a, b, m, n, p}, x] && LinearPairQ[u, v, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{x \left (a+b x^3\right )^3} \, dx,x,c+d x\right )}{d e} \\ & = \frac {\text {Subst}\left (\int \frac {1}{x (a+b x)^3} \, dx,x,(c+d x)^3\right )}{3 d e} \\ & = \frac {\text {Subst}\left (\int \left (\frac {1}{a^3 x}-\frac {b}{a (a+b x)^3}-\frac {b}{a^2 (a+b x)^2}-\frac {b}{a^3 (a+b x)}\right ) \, dx,x,(c+d x)^3\right )}{3 d e} \\ & = \frac {1}{6 a d e \left (a+b (c+d x)^3\right )^2}+\frac {1}{3 a^2 d e \left (a+b (c+d x)^3\right )}+\frac {\log (c+d x)}{a^3 d e}-\frac {\log \left (a+b (c+d x)^3\right )}{3 a^3 d e} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.70 \[ \int \frac {1}{(c e+d e x) \left (a+b (c+d x)^3\right )^3} \, dx=\frac {\frac {a \left (a+2 \left (a+b (c+d x)^3\right )\right )}{\left (a+b (c+d x)^3\right )^2}+6 \log (c+d x)-2 \log \left (a+b (c+d x)^3\right )}{6 a^3 d e} \]

[In]

Integrate[1/((c*e + d*e*x)*(a + b*(c + d*x)^3)^3),x]

[Out]

((a*(a + 2*(a + b*(c + d*x)^3)))/(a + b*(c + d*x)^3)^2 + 6*Log[c + d*x] - 2*Log[a + b*(c + d*x)^3])/(6*a^3*d*e
)

Maple [A] (verified)

Time = 4.21 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.57

method result size
default \(\frac {\frac {\ln \left (d x +c \right )}{a^{3} d}-\frac {b \left (\frac {-\frac {a \,d^{2} x^{3}}{3}-a c d \,x^{2}-a \,c^{2} x -\frac {a \left (2 c^{3} b +3 a \right )}{6 d b}}{\left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right )^{2}}+\frac {\ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right )}{3 b d}\right )}{a^{3}}}{e}\) \(148\)
risch \(\frac {\frac {b \,d^{2} x^{3}}{3 a^{2}}+\frac {b c d \,x^{2}}{a^{2}}+\frac {b x \,c^{2}}{a^{2}}+\frac {2 c^{3} b +3 a}{6 a^{2} d}}{e \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right )^{2}}+\frac {\ln \left (d x +c \right )}{a^{3} d e}-\frac {\ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right )}{3 a^{3} d e}\) \(152\)
norman \(\frac {\frac {c b d \,x^{2}}{a^{2} e}+\frac {c^{2} b x}{a^{2} e}+\frac {2 b^{3} c^{3} d^{5}+3 a \,b^{2} d^{5}}{6 a^{2} d^{6} e \,b^{2}}+\frac {b \,d^{2} x^{3}}{3 a^{2} e}}{\left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right )^{2}}+\frac {\ln \left (d x +c \right )}{a^{3} d e}-\frac {\ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right )}{3 a^{3} d e}\) \(175\)
parallelrisch \(\frac {6 \ln \left (d x +c \right ) a^{2} b^{2} d^{5}-12 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{2} a \,b^{3} c \,d^{7}+6 x^{2} a \,b^{3} c \,d^{7}+6 x a \,b^{3} c^{2} d^{6}+12 \ln \left (d x +c \right ) a \,b^{3} c^{3} d^{5}-4 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) a \,b^{3} c^{3} d^{5}+36 \ln \left (d x +c \right ) x^{5} b^{4} c \,d^{10}-12 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{5} b^{4} c \,d^{10}+90 \ln \left (d x +c \right ) x^{4} b^{4} c^{2} d^{9}-30 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{4} b^{4} c^{2} d^{9}+120 \ln \left (d x +c \right ) x^{3} b^{4} c^{3} d^{8}-40 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{3} b^{4} c^{3} d^{8}+90 \ln \left (d x +c \right ) x^{2} b^{4} c^{4} d^{7}-30 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{2} b^{4} c^{4} d^{7}-12 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x a \,b^{3} c^{2} d^{6}+36 \ln \left (d x +c \right ) x^{2} a \,b^{3} c \,d^{7}+36 \ln \left (d x +c \right ) x a \,b^{3} c^{2} d^{6}-2 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{6} b^{4} d^{11}+3 a^{2} b^{2} d^{5}+2 a \,b^{3} c^{3} d^{5}+36 \ln \left (d x +c \right ) x \,b^{4} c^{5} d^{6}-12 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x \,b^{4} c^{5} d^{6}+12 \ln \left (d x +c \right ) x^{3} a \,b^{3} d^{8}-4 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{3} a \,b^{3} d^{8}-2 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) a^{2} b^{2} d^{5}+6 \ln \left (d x +c \right ) x^{6} b^{4} d^{11}+2 x^{3} a \,b^{3} d^{8}+6 \ln \left (d x +c \right ) b^{4} c^{6} d^{5}-2 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) b^{4} c^{6} d^{5}}{6 a^{3} b^{2} d^{6} e \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right )^{2}}\) \(890\)

[In]

int(1/(d*e*x+c*e)/(a+b*(d*x+c)^3)^3,x,method=_RETURNVERBOSE)

[Out]

1/e*(ln(d*x+c)/a^3/d-1/a^3*b*((-1/3*a*d^2*x^3-a*c*d*x^2-a*c^2*x-1/6*a/d*(2*b*c^3+3*a)/b)/(b*d^3*x^3+3*b*c*d^2*
x^2+3*b*c^2*d*x+b*c^3+a)^2+1/3/b/d*ln(b*d^3*x^3+3*b*c*d^2*x^2+3*b*c^2*d*x+b*c^3+a)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 474 vs. \(2 (88) = 176\).

Time = 0.27 (sec) , antiderivative size = 474, normalized size of antiderivative = 5.04 \[ \int \frac {1}{(c e+d e x) \left (a+b (c+d x)^3\right )^3} \, dx=\frac {2 \, a b d^{3} x^{3} + 6 \, a b c d^{2} x^{2} + 6 \, a b c^{2} d x + 2 \, a b c^{3} + 3 \, a^{2} - 2 \, {\left (b^{2} d^{6} x^{6} + 6 \, b^{2} c d^{5} x^{5} + 15 \, b^{2} c^{2} d^{4} x^{4} + b^{2} c^{6} + 2 \, {\left (10 \, b^{2} c^{3} + a b\right )} d^{3} x^{3} + 2 \, a b c^{3} + 3 \, {\left (5 \, b^{2} c^{4} + 2 \, a b c\right )} d^{2} x^{2} + 6 \, {\left (b^{2} c^{5} + a b c^{2}\right )} d x + a^{2}\right )} \log \left (b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a\right ) + 6 \, {\left (b^{2} d^{6} x^{6} + 6 \, b^{2} c d^{5} x^{5} + 15 \, b^{2} c^{2} d^{4} x^{4} + b^{2} c^{6} + 2 \, {\left (10 \, b^{2} c^{3} + a b\right )} d^{3} x^{3} + 2 \, a b c^{3} + 3 \, {\left (5 \, b^{2} c^{4} + 2 \, a b c\right )} d^{2} x^{2} + 6 \, {\left (b^{2} c^{5} + a b c^{2}\right )} d x + a^{2}\right )} \log \left (d x + c\right )}{6 \, {\left (a^{3} b^{2} d^{7} e x^{6} + 6 \, a^{3} b^{2} c d^{6} e x^{5} + 15 \, a^{3} b^{2} c^{2} d^{5} e x^{4} + 2 \, {\left (10 \, a^{3} b^{2} c^{3} + a^{4} b\right )} d^{4} e x^{3} + 3 \, {\left (5 \, a^{3} b^{2} c^{4} + 2 \, a^{4} b c\right )} d^{3} e x^{2} + 6 \, {\left (a^{3} b^{2} c^{5} + a^{4} b c^{2}\right )} d^{2} e x + {\left (a^{3} b^{2} c^{6} + 2 \, a^{4} b c^{3} + a^{5}\right )} d e\right )}} \]

[In]

integrate(1/(d*e*x+c*e)/(a+b*(d*x+c)^3)^3,x, algorithm="fricas")

[Out]

1/6*(2*a*b*d^3*x^3 + 6*a*b*c*d^2*x^2 + 6*a*b*c^2*d*x + 2*a*b*c^3 + 3*a^2 - 2*(b^2*d^6*x^6 + 6*b^2*c*d^5*x^5 +
15*b^2*c^2*d^4*x^4 + b^2*c^6 + 2*(10*b^2*c^3 + a*b)*d^3*x^3 + 2*a*b*c^3 + 3*(5*b^2*c^4 + 2*a*b*c)*d^2*x^2 + 6*
(b^2*c^5 + a*b*c^2)*d*x + a^2)*log(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a) + 6*(b^2*d^6*x^6 + 6*b
^2*c*d^5*x^5 + 15*b^2*c^2*d^4*x^4 + b^2*c^6 + 2*(10*b^2*c^3 + a*b)*d^3*x^3 + 2*a*b*c^3 + 3*(5*b^2*c^4 + 2*a*b*
c)*d^2*x^2 + 6*(b^2*c^5 + a*b*c^2)*d*x + a^2)*log(d*x + c))/(a^3*b^2*d^7*e*x^6 + 6*a^3*b^2*c*d^6*e*x^5 + 15*a^
3*b^2*c^2*d^5*e*x^4 + 2*(10*a^3*b^2*c^3 + a^4*b)*d^4*e*x^3 + 3*(5*a^3*b^2*c^4 + 2*a^4*b*c)*d^3*e*x^2 + 6*(a^3*
b^2*c^5 + a^4*b*c^2)*d^2*e*x + (a^3*b^2*c^6 + 2*a^4*b*c^3 + a^5)*d*e)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 292 vs. \(2 (73) = 146\).

Time = 1.83 (sec) , antiderivative size = 292, normalized size of antiderivative = 3.11 \[ \int \frac {1}{(c e+d e x) \left (a+b (c+d x)^3\right )^3} \, dx=\frac {3 a + 2 b c^{3} + 6 b c^{2} d x + 6 b c d^{2} x^{2} + 2 b d^{3} x^{3}}{6 a^{4} d e + 12 a^{3} b c^{3} d e + 6 a^{2} b^{2} c^{6} d e + 90 a^{2} b^{2} c^{2} d^{5} e x^{4} + 36 a^{2} b^{2} c d^{6} e x^{5} + 6 a^{2} b^{2} d^{7} e x^{6} + x^{3} \cdot \left (12 a^{3} b d^{4} e + 120 a^{2} b^{2} c^{3} d^{4} e\right ) + x^{2} \cdot \left (36 a^{3} b c d^{3} e + 90 a^{2} b^{2} c^{4} d^{3} e\right ) + x \left (36 a^{3} b c^{2} d^{2} e + 36 a^{2} b^{2} c^{5} d^{2} e\right )} + \frac {\log {\left (\frac {c}{d} + x \right )}}{a^{3} d e} - \frac {\log {\left (\frac {3 c^{2} x}{d^{2}} + \frac {3 c x^{2}}{d} + x^{3} + \frac {a + b c^{3}}{b d^{3}} \right )}}{3 a^{3} d e} \]

[In]

integrate(1/(d*e*x+c*e)/(a+b*(d*x+c)**3)**3,x)

[Out]

(3*a + 2*b*c**3 + 6*b*c**2*d*x + 6*b*c*d**2*x**2 + 2*b*d**3*x**3)/(6*a**4*d*e + 12*a**3*b*c**3*d*e + 6*a**2*b*
*2*c**6*d*e + 90*a**2*b**2*c**2*d**5*e*x**4 + 36*a**2*b**2*c*d**6*e*x**5 + 6*a**2*b**2*d**7*e*x**6 + x**3*(12*
a**3*b*d**4*e + 120*a**2*b**2*c**3*d**4*e) + x**2*(36*a**3*b*c*d**3*e + 90*a**2*b**2*c**4*d**3*e) + x*(36*a**3
*b*c**2*d**2*e + 36*a**2*b**2*c**5*d**2*e)) + log(c/d + x)/(a**3*d*e) - log(3*c**2*x/d**2 + 3*c*x**2/d + x**3
+ (a + b*c**3)/(b*d**3))/(3*a**3*d*e)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 258 vs. \(2 (88) = 176\).

Time = 0.23 (sec) , antiderivative size = 258, normalized size of antiderivative = 2.74 \[ \int \frac {1}{(c e+d e x) \left (a+b (c+d x)^3\right )^3} \, dx=\frac {2 \, b d^{3} x^{3} + 6 \, b c d^{2} x^{2} + 6 \, b c^{2} d x + 2 \, b c^{3} + 3 \, a}{6 \, {\left (a^{2} b^{2} d^{7} e x^{6} + 6 \, a^{2} b^{2} c d^{6} e x^{5} + 15 \, a^{2} b^{2} c^{2} d^{5} e x^{4} + 2 \, {\left (10 \, a^{2} b^{2} c^{3} + a^{3} b\right )} d^{4} e x^{3} + 3 \, {\left (5 \, a^{2} b^{2} c^{4} + 2 \, a^{3} b c\right )} d^{3} e x^{2} + 6 \, {\left (a^{2} b^{2} c^{5} + a^{3} b c^{2}\right )} d^{2} e x + {\left (a^{2} b^{2} c^{6} + 2 \, a^{3} b c^{3} + a^{4}\right )} d e\right )}} - \frac {\log \left (b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a\right )}{3 \, a^{3} d e} + \frac {\log \left (d x + c\right )}{a^{3} d e} \]

[In]

integrate(1/(d*e*x+c*e)/(a+b*(d*x+c)^3)^3,x, algorithm="maxima")

[Out]

1/6*(2*b*d^3*x^3 + 6*b*c*d^2*x^2 + 6*b*c^2*d*x + 2*b*c^3 + 3*a)/(a^2*b^2*d^7*e*x^6 + 6*a^2*b^2*c*d^6*e*x^5 + 1
5*a^2*b^2*c^2*d^5*e*x^4 + 2*(10*a^2*b^2*c^3 + a^3*b)*d^4*e*x^3 + 3*(5*a^2*b^2*c^4 + 2*a^3*b*c)*d^3*e*x^2 + 6*(
a^2*b^2*c^5 + a^3*b*c^2)*d^2*e*x + (a^2*b^2*c^6 + 2*a^3*b*c^3 + a^4)*d*e) - 1/3*log(b*d^3*x^3 + 3*b*c*d^2*x^2
+ 3*b*c^2*d*x + b*c^3 + a)/(a^3*d*e) + log(d*x + c)/(a^3*d*e)

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.63 \[ \int \frac {1}{(c e+d e x) \left (a+b (c+d x)^3\right )^3} \, dx=-\frac {\log \left ({\left | b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a \right |}\right )}{3 \, a^{3} d e} + \frac {\log \left ({\left | d x + c \right |}\right )}{a^{3} d e} + \frac {2 \, a b d^{3} x^{3} + 6 \, a b c d^{2} x^{2} + 6 \, a b c^{2} d x + 2 \, a b c^{3} + 3 \, a^{2}}{6 \, {\left (b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a\right )}^{2} a^{3} d e} \]

[In]

integrate(1/(d*e*x+c*e)/(a+b*(d*x+c)^3)^3,x, algorithm="giac")

[Out]

-1/3*log(abs(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a))/(a^3*d*e) + log(abs(d*x + c))/(a^3*d*e) + 1
/6*(2*a*b*d^3*x^3 + 6*a*b*c*d^2*x^2 + 6*a*b*c^2*d*x + 2*a*b*c^3 + 3*a^2)/((b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2
*d*x + b*c^3 + a)^2*a^3*d*e)

Mupad [B] (verification not implemented)

Time = 6.49 (sec) , antiderivative size = 249, normalized size of antiderivative = 2.65 \[ \int \frac {1}{(c e+d e x) \left (a+b (c+d x)^3\right )^3} \, dx=\frac {\frac {2\,b\,c^3+3\,a}{6\,a^2\,d}+\frac {b\,d^2\,x^3}{3\,a^2}+\frac {b\,c^2\,x}{a^2}+\frac {b\,c\,d\,x^2}{a^2}}{x^2\,\left (15\,e\,b^2\,c^4\,d^2+6\,a\,e\,b\,c\,d^2\right )+a^2\,e+x\,\left (6\,d\,e\,b^2\,c^5+6\,a\,d\,e\,b\,c^2\right )+x^3\,\left (20\,e\,b^2\,c^3\,d^3+2\,a\,e\,b\,d^3\right )+b^2\,c^6\,e+b^2\,d^6\,e\,x^6+2\,a\,b\,c^3\,e+6\,b^2\,c\,d^5\,e\,x^5+15\,b^2\,c^2\,d^4\,e\,x^4}+\frac {\ln \left (c+d\,x\right )}{a^3\,d\,e}-\frac {\ln \left (b\,c^3+3\,b\,c^2\,d\,x+3\,b\,c\,d^2\,x^2+b\,d^3\,x^3+a\right )}{3\,a^3\,d\,e} \]

[In]

int(1/((c*e + d*e*x)*(a + b*(c + d*x)^3)^3),x)

[Out]

((3*a + 2*b*c^3)/(6*a^2*d) + (b*d^2*x^3)/(3*a^2) + (b*c^2*x)/a^2 + (b*c*d*x^2)/a^2)/(x^2*(15*b^2*c^4*d^2*e + 6
*a*b*c*d^2*e) + a^2*e + x*(6*b^2*c^5*d*e + 6*a*b*c^2*d*e) + x^3*(20*b^2*c^3*d^3*e + 2*a*b*d^3*e) + b^2*c^6*e +
 b^2*d^6*e*x^6 + 2*a*b*c^3*e + 6*b^2*c*d^5*e*x^5 + 15*b^2*c^2*d^4*e*x^4) + log(c + d*x)/(a^3*d*e) - log(a + b*
c^3 + b*d^3*x^3 + 3*b*c^2*d*x + 3*b*c*d^2*x^2)/(3*a^3*d*e)